Part Number Hot Search : 
DS229 TP101B47 2N6547 908QT1CF SC805 Q980000 L151K6 7C106
Product Description
Full Text Search
 

To Download AT34C02-10PE-27 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 features ? permanent software write protection for the first-half of the array ? software procedure to verify write protect status  hardware write protection for the entire array  low-voltage and standard-voltage operation ? 2.7 (v cc = 2.7v to 5.5v) ? 1.8 (v cc = 1.8v to 5.5v)  internally organized 256 x 8  two-wire serial interface  schmitt trigger, filtered inputs for noise suppression  bidirectional data transfer protocol  100 khz (1.8v) and 400 khz (2.7v and 5.0v) compatibility  16-byte page write modes  partial page writes are allowed  self-timed write cycle (5 ms max)  high-reliability ? endurance: 1 million write cycles ? data retention: 100 years  automotive grade, extended temperature and lead-free devices available  8-lead pdip, 8-lead jedec soic, 8-lead map, 8-lead tssop, and 8-ball dbga2 packages  die sales: wafer form, waffle pack, and bumped wafers description the at34c02 provides 2048 bits of serial electrically-erasable and programmable read only memory (eeprom) organized as 256 words of 8 bits each. the first-half of the device incorporates a software write protection feature while hardware write pro- tection for the entire array is available via an external pin as well. once the software write protection is enabled, by sending a special command to the device, it cannot be reversed. the hardware write protection is controlled with the wp pin and can be used to protect the entire array, whether or not the software write protection has been enabled. this allows the user to protect none, first-half, or all of the array depending on the application. the device is optimized for use in many industrial and commercial applications where low-power and low-voltage operations are essential. the at34c02 is available in space saving 8-lead pdip, 8-lead jedec soic, 8-lead map, 8-lead tssop and 8-ball dbga2 packages and is accessed via a two-wire serial interface. in addition, it is available in 2.7v (2.7v to 5.5v) and 1.8v (1.8v to 5.5v) versions. table 1. pin configurations pin name function a0 - a2 address inputs sda serial data scl serial clock input wp write protect two-wire serial eeprom with permanent software write protect 2k (256 x 8) at34c02 rev. 0958o?seepr?12/04 8-lead pdip 1 2 3 4 8 7 6 5 a0 a1 a2 gnd vcc wp scl sda 8-lead soic 1 2 3 4 8 7 6 5 a0 a1 a2 gnd vcc wp scl sda 8-lead tssop 1 2 3 4 8 7 6 5 a0 a1 a2 gnd vcc wp scl sda 8-lead map bottom view 1 2 3 4 8 7 6 5 a0 a1 a2 gnd vcc wp scl sda 8-ball dbga2 vcc wp s cl s da a0 a1 a2 gnd 1 2 3 4 8 7 6 5 bottom view
2 at34c02 0958o?seepr?12/04 figure 1. block diagram absolute maximum ratings* operating temperature..................................?55c to +125c *notice: stresses beyond those listed under ?absolute maximum ratings? may cause permanent dam- age to the device. this is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. storage temperature .....................................?65 c to +150c voltage on any pin with respect to ground .................................... ?1.0v to +7.0v maximum operating voltage .......................................... 6.25v dc output current........................................................ 5.0 ma d out /ack logic d out d in a 0 sda gnd a 1 scl v cc a 2 y dec data word addr/counter serial control logic start stop logic device address comparator serial mux eeprom en comp inc load load r/w h.v. pump/timing data recovery x dec wp write protect circuitry software write protected area (00h - 7fh)
3 at34c02 0958o?seepr?12/04 pin description serial clock (scl): the scl input is used to positive edge clock data into each eeprom device and negative edge clock data out of each device. serial data (sda): the sda pin is bidirectional for serial data transfer. this pin is open-drain driven and may be wire-ored with any number of other open-drain or open collector devices. device/page addresses (a2, a1, a0): the a2, a1, and a0 pins are device address inputs that are hardwired (directly to gnd or to vcc) for compatibility with other at24cxx devices. when the pins are hardwired, as many as eight 2k devices may be addressed on a single bus system. (device addressing is discussed in detail under ?device addressing,? page 9.) a device is selected when a corresponding hardware and software match is true. if t hese pins are left floating, the a2, a1, and a0 pins will be internally pulled down to gnd. however, due to capacitive coupling that may appear during customer applications, atmel reco mmends always connecting the address pins to a known state. when using a pull-up resistor, atmel recommends using 10k ? or less. write protect (wp): the write protect input, when connected to gnd, allows nor- mal write operations. when wp is connected directly to vcc, all write operations to the memory are inhibited. if the pin is left floating, the wp pin will be internally pulled down to gnd. however, due to capacitive coupling that may appear during customer applica- tions, atmel recommends always connecting the wp pins to a known state. when using a pull-up resistor, atmel recommends using 10k ? or less. note: 1. this parameter is characterized and is not 100% tested. table 2. at34c02 write protection modes wp pin status write protect register part of the array write protected v cc ? full array (2k) gnd or floating not programmed normal read/write gnd or floating programmed first-half of array (1k: 00h - 7fh) table 3. pin capacitance (1) applicable over recommended operating range from t a = 25 c, f = 1.0 mhz, v cc = +1.8v symbol test condition max units conditions c i/o input/output capacitance (sda) 8 pf v i/o = 0v c in input capacitance (a 0 , a 1 , a 2 , scl) 6 pf v in = 0v
4 at34c02 0958o?seepr?12/04 note: 1. v il min and v ih max are reference only and are not tested. table 4. dc characteristics applicable over recommended operating range from: t ai = ? 40 c to +85 c, v cc = +1.8v to +5.5v, t ae = ? 40 c to +125 c, v cc = +1.8v to +5.5v (unless otherwise noted). symbol parameter test condition min typ max units v cc1 supply voltage 1.8 5.5 v v cc2 supply voltage 2.7 5.5 v i cc supply current v cc = 5.0v read at 100 khz 0.4 1.0 ma i cc supply current v cc = 5.0v write at 100 khz 2.0 3.0 ma i sb1 standby current v cc = 1.8v v in = v cc or v ss 0.6 3.0 a i sb2 standby current v cc = 2.7v v in = v cc or v ss 1.6 4.0 a i sb3 standby current v cc = 5.0v v in = v cc or v ss 8.0 18.0 a i li input leakage current v in = v cc or v ss 0.10 3.0 a i lo output leakage current v out = v cc or v ss 0.05 3.0 a v il input low level (1) ?0.6 v cc x 0.3 v v ih input high level (1) v cc x 0.7 v cc + 0.5 v v ol2 output low level v cc = 3.0v i ol = 2.1 ma 0.4 v v ol1 output low level v cc = 1.8v i ol = 0.15 ma 0.2 v
5 at34c02 0958o?seepr?12/04 note: 1. this parameter is characterized and is not 100% tested. table 5. ac characteristics applicable over recommended operating range from t ai = ? 40 c to +85 c, t ae = ? 40 c to +125 c, v cc = +1.8v to +5.5v, c l = 1 ttl gate and 100 pf (unless otherwise noted). symbol parameter 1.8v 2.7v, 5.0v units min max min max f scl clock frequency, scl 100 400 khz t low clock pulse width low 4.7 1.2 s t high clock pulse width high 4.0 0.6 s t i noise suppression time (1) 100 50 ns t aa clock low to data out valid 0.1 4.5 0.1 0.9 s t buf time the bus must be free before a new transmission can start (1) 4.7 1.2 s t hd.sta start hold time 4.0 0.6 s t su.sta start set-up time 4.7 0.6 s t hd.dat data in hold time 0 0 s t su.dat data in set-up time 200 100 ns t r inputs rise time (1) 1.0 0.3 s t f inputs fall time (1) 300 300 ns t su.sto stop set-up time 4.7 0.6 s t dh data out hold time 100 50 ns t wr write cycle time 5 5 ms endurance (1) 5.0v, 25 c, page mode 1m 1m write cycles
6 at34c02 0958o?seepr?12/04 memory organization at34c02, 2k serial eeprom: the 2k is internally organized with 16 pages of 16 bytes each. random word addressing requires a 8-bit data word address. device operation clock and data transitions: the sda pin is normally pulled high with an exter- nal device. data on the sda pin may change only during scl low time periods (see figure 5 on page 8). data changes during scl high periods will indicate a start or stop condition as defined below. start condition: a high-to-low transition of sda with scl high is a start condition which must precede any other command (see figure 5 on page 8). stop condition: a low-to-high transition of sda wi th scl high is a stop condition. after a read sequence, the stop command will place the eeprom in a standby power mode (see figure 5 on page 8). acknowledge: all addresses and data words are serially transmitted to and from the eeprom in 8-bit words. the eeprom sends a zero to acknowledge that it has received each word. this happens during the ninth clock cycle. standby mode: the at34c02 features a low-power standby mode which is enabled: (a) upon power-up or (b) after the receipt of the stop bit and the completion of any internal operations. memory reset: after an interruption in protocol, power loss or system reset, any two-wire part can be reset by following these steps: (a) clock up to 9 cycles, (b) look for sda high in each cycle while scl is high and then (c) create a start condition.
7 at34c02 0958o?seepr?12/04 figure 2. bus timing scl: serial clock sda: serial data i/o figure 3. write cycle timing scl: serial clock sda: serial data i/o note: 1. the write cycle time t wr is the time from a valid stop condition of a write sequence to the end of the internal clear/write cycle. figure 4. data validity t wr (1) stop condition start condition wordn ack 8th bit scl sda
8 at34c02 0958o?seepr?12/04 figure 5. start and stop condition figure 6. output acknowledge
9 at34c02 0958o?seepr?12/04 device addressing the 2k eeprom device requires an 8-bit device address word following a start condi- tion to enable the chip for a read or write operation (see figure 8 on page 12). the device address word cons ists of a mandatory one-zero sequence for the first four most-significant bits (1010) for normal read and write operations and 0110 for writing to the write protect register. the next 3 bits are the a2, a1 and a0 device address bits for the at34c02 eeprom. these 3 bits must compare to their corresponding hard-wired input pins. the eighth bit of the device address is the read/write operation select bit. a read opera- tion is initiated if this bit is high and a write operation is initiated if this bit is low. upon a compare of the device address, the eeprom will output a zero. if a compare is not made, the chip will return to a standby state. the device will not acknowledge if the write protect register has been programmed and the control code is 0110. write operations byte write: a write operation requires an 8-bit data word address following the device address word and acknowledgment. upon receipt of this address, the eeprom will again respond with a zero and then clock in the first 8-bit data word. following receipt of the 8-bit data word, the eeprom will output a zero and the addressing device, such as a microcontroller, must terminate the write sequence with a stop condi- tion. at this time the eeprom enters an internally-timed write cycle, t wr , to the nonvolatile memory. all inputs are disabled during this write cycle and the eeprom will not respond until the write is complete (see figure 9 on page 12). the device will acknowledge a write command, but not write the data, if the software or hardware write protection has been enabled. the write cycle time must be observed even when the write protection is enabled. page write: the 2k device is capable of 16-byte page write. a page write is initiated the same as a byte write, but the microcontroller does not send a stop condition after the first data word is clocked in. instead, after the eeprom acknowledges receipt of the first data word, the microcontroller can transmit up to fifteen more data words. the eeprom will respond with a zero after each data word received. the microcontroller must terminate the page write sequence with a stop condition (see figure 10 on page 13). the data word address lower four bits are internally incremented following the receipt of each data word. the higher data word address bi ts are not incremented, retaining the memory page row location. when the word address, internally generated, reaches the page boundary, the following byte is placed at the beginning of the same page. if more than sixteen data words are transmitted to the eeprom, the data word address will ?roll over? and previous data will be overwritten. the address ?roll over? during write is from the last byte of the current page to the first byte of the same page. the device will acknowledge a write command, but not write the data, if the software or hardware write protection has been enabled. the write cycle time must be observed even when the write protection is enabled. acknowledge polling: once the internally-timed write cycle has started and the eeprom inputs are disabled, acknowledge polling can be initiated. this involves send- ing a start condition followed by the device address word. the read/write bit is representative of the operation desired. only if the internal write cycle has completed will the eeprom respond with a zero allowing the read or write sequence to continue.
10 at34c02 0958o?seepr?12/04 write protection the software write protection, once enabled, permanently write protects only the first- half of the array (00h - 7fh) while the hardware write protection, via the wp pin, is used to protect the entire array. software write protection: the software write protection is enabled by send- ing a command, similar to a normal write command, to the device which programs the write protect register. this must be done with the wp pin low. the write protect register is programmed by sending a write command with the device address of 0110 instead of 1010 with the address and data bit being don?t cares (see figure 7 on page 11). once the software write protection has been enabled, the device will no longer acknowledge the 0110 control byte. the software write protection cannot be reversed even if the device is powered down. the write cycle time must be observed. hardware write protection: the wp pin can be connected to v cc , gnd, or left floating. connecting the wp pin to v cc will write protect the entire array, regardless of whether or not the software write protection has been enabled. the software write pro- tection register cannot be programmed when the wp pin is connected to v cc . if the wp pin is connected to gnd or left floating, the write protection mode is determined by the status of the software write protect register.
11 at34c02 0958o?seepr?12/04 figure 7. setting write protect register read operations read operations are initiated the same way as write operations with the exception that the read/write select bit in the device address word is set to one. there are three read operations: current address read, random address read and sequential read. current address read: the internal data word address counter maintains the last address accessed during the last read or write operation, incremented by one. this address stays valid between operations as long as the chip power is maintained. the address ?roll over? during read is from the last byte of the last memory page to the first byte of the first page. once the device address with the read/write select bit set to one is clocked in and acknowledged by the eeprom, the current address data word is serially clocked out. to end the command, the microcontroller does not respond with an input zero but does generate a following stop condition (see figure 11 on page 13). random read: a random read requires a ?dummy? byte write sequence to load in the data word address. once the device address word and data word address are clocked wp connected to gnd or floating start r/w bit write protect register acknowledgment from device action from device 1010 r x ack read array 1010 w programmed ack can write to second half (80h - ffh) only 1010 w not programmed ack can write to full array 0110 r programmed no ack stop - indicates write protect register is programmed 0110 r not programmed ack read out data don?t care. indicates wp register is not prog 0110 w programmed no ack stop - indicates write protect register is programmed 0110 w not programmed ack program write protect register (irreversible) wp connected to v cc 1010 r x ack read array 1010 w programmed ack device write protect 1010 w not programmed ack device write protect 0110 r programmed no ack stop - indicates write protect register is programmed 0110 r not programmed ack read out data don?t care. indicates wp register is not prog 0110 w programmed no ack stop - indicates write protect register is programmed 0110 w not programmed ack cannot program write protect register s t a r t s t o p sda line word address data control byte a c k 0110 0 a c k a c k = don't care
12 at34c02 0958o?seepr?12/04 in and acknowledged by the eeprom, the microcontroller must generate another start condition. the microcontroller now initiates a current address read by sending a device address with the read/write select bit high. the eeprom acknowledges the device address and serially clocks out the data word. to end the command, the microcontroller does not respond with a zero but does generate a following stop condition (see figure 12 on page 13). sequential read: sequential reads are initiated by either a current address read or a random address read. after the microcontroller receives a data word, it responds with an acknowledge. as long as the eeprom receives an acknowledge, it will continue to increment the data word address and serially clock out sequential data words. when the memory address limit is reached, the data word address will ?roll over? and the sequen- tial read will continue. the sequential read operation is terminated when the microcontroller does not respond with a zero but does generate a following stop condi- tion (see figure 13 on page 13). write protect register status: to find out if the register has been pro- grammed, the same procedure is used as to program the register except that the r/w bit is set to 1. if the device acknowledges , then the write protect register has not been programmed. otherwise, it has been programmed and the device is permanently write protected at the first half of the array. figure 8. device address figure 9. byte write
13 at34c02 0958o?seepr?12/04 figure 10. page write figure 11. current address read figure 12. random read figure 13. sequential read
14 at34c02 0958o?seepr?12/04 notes: 1. for 2.7v devices used in the 4.5v to 5.5v range, please refer to performance values in the ac and dc characteristics ta bl e s. 2. ?u? and ?q? designate green package + rohs compliant. 3. available in waffle pack and wafer form; order as sl719 for wafer form. bumped die available upon request. please contact serial eeprom marketing. ordering information (1) ordering code package operation range at34c02-10pi-2.7 at34c02n-10si-2.7 at34c02-10ti-2.7 8p3 8s1 8a2 industrial temperature (?40 c to 85 c) at34c02-10pi-1.8 at34c02n-10si-1.8 at34c02-10ti-1.8 8p3 8s1 8a2 industrial temperature (?40 c to 85 c) at34c02-10pu-2.7 (2) at34c02-10pu-1.8 (2) at34c02n-10su-2.7 (2) at34c02n-10su-1.8 (2) at34c02-10tu-2.7 (2) at34c02-10tu-1.8 (2) at34c02y1-10yu-2.7 (2) at34c02y1-10yu-1.8 (2) at34c02u3-10uu-2.7 (2) at34c02u3-10uu-1.8 (2) 8p3 8p3 8s1 8s1 8a2 8a2 8y1 8y1 8u3-1 8u3-1 lead-free/halogen-free/ industrial temperature (?40 c to 85 c) at34c02-10pe-2.7 at34c02n-10se-2.7 at34c02-10te-2.7 8p3 8s1 8a2 extended temperature (?40 c to 125 c) at34c02-10pq-2.7 (2) at34c02n-10sq-2.7 (2) at34c02-10tq-2.7 (2) 8p3 8s1 8a2 lead-free/halogen-free/ extended temperature (?40 c to 125 c) at34c02-w2.7-11 (3) at34c02-w1.8-11 (3) die sale die sale industrial temperature (?40 c to 85 c) package type 8p3 8-lead, 0.300" wide, plastic dual inline package (pdip) 8s1 8-lead, 0.150" wide, plastic gull wing small outline package (jedec soic) 8a2 8-lead, 0.170" wide, thin shrink small outline package (tssop) 8y1 8-lead, 4.90 mm x 3.00 mm body, dual footprint, non-leaded, miniature array package (map) 8u3-1 8-ball, die ball grid array package (dbga2) options ?2.7 low voltage (2.7v to 5.5v) ?1.8 low voltage (1.8v to 5.5v)
15 at34c02 0958o?seepr?12/04 packaging information 8p3 ? pdip 2325 orchard parkway san jose, ca 95131 title drawing no. r rev. 8p3 , 8-lead, 0.300" wide body, plastic dual in-line package (pdip) 01/09/02 8p3 b d d1 e e1 e l b2 b a2 a 1 n ea c b3 4 plcs top view side view end view common dimensions (unit of measure = inches) symbol min nom max note notes: 1. this drawing is for general information only; refer to jedec drawing ms-001, variation ba for additional information. 2. dimensions a and l are measured with the package seated in jedec seating plane gauge gs-3. 3. d, d1 and e1 dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed 0.010 inch. 4. e and ea measured with the leads constrained to be perpendicular to datum. 5. pointed or rounded lead tips are preferred to ease insertion. 6. b2 and b3 maximum dimensions do not include dambar protrusions. dambar protrusions shall not exceed 0.010 (0.25 mm). a 0.210 2 a2 0.115 0.130 0.195 b 0.014 0.018 0.022 5 b2 0.045 0.060 0.070 6 b3 0.030 0.039 0.045 6 c 0.008 0.010 0.014 d 0.355 0.365 0.400 3 d1 0.005 3 e 0.300 0.310 0.325 4 e1 0.240 0.250 0.280 3 e 0.100 bsc ea 0.300 bsc 4 l 0.115 0.130 0.150 2
16 at34c02 0958o?seepr?12/04 8s1 ? jedec soic 1150 e. cheyenne mtn. blvd. colorado springs, co 80906 title drawing no. r rev. note: 10/7/03 8s1 , 8-lead (0.150" wide body), plastic gull wing small outline (jedec soic) 8s1 b common dimensions (unit of measure = mm) symbol min nom max note a1 0.10 ? 0.25 these drawings are for general information only. refer to jedec drawing ms-012, variation aa for proper dimensions, tolerances, datums, etc. a 1.35 ? 1.75 b 0.31 ? 0.51 c 0.17 ? 0.25 d 4.80 ? 5.00 e1 3.81 ? 3.99 e 5.79 ? 6.20 e 1.27 bsc l 0.40 ? 1.27 ? 0? ? 8? ? top view end view side view e b d a a1 n e 1 c e1 l
17 at34c02 0958o?seepr?12/04 8a2 ? tssop 2325 orchard parkway san jose, ca 95131 title drawing no. r rev. 5/30/02 common dimensions (unit of measure = mm) symbol min nom max note d 2.90 3.00 3.10 2, 5 e 6.40 bsc e1 4.30 4.40 4.50 3, 5 a ? ? 1.20 a2 0.80 1.00 1.05 b 0.19 ? 0.30 4 e 0.65 bsc l 0.45 0.60 0.75 l1 1.00 ref 8a2 , 8-lead, 4.4 mm body, plastic thin shrink small outline package (tssop) notes: 1. this drawing is for general information only. refer to jedec drawing mo-153, variation aa, for proper dimensions, tolerances, datums, etc. 2. dimension d does not include mold flash, protrusions or gate burrs. mold flash, protrusions and gate burrs shall not exceed 0.15 mm (0.006 in) per side. 3. dimension e1 does not include inter-lead flash or protrusions. inter-lead flash and protrusions shall not exceed 0.25 mm (0.010 in) per side. 4. dimension b does not include dambar protrusion. allowable dambar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. dambar cannot be located on the lower radius of the foot. minimum space between protrusion and adjacent lead is 0.07 mm. 5. dimension d and e1 to be determined at datum plane h. 8a2 b side view end view top view a2 a l l1 d 1 2 3 e1 n b pin 1 indicator this corner e e
18 at34c02 0958o?seepr?12/04 8y1 ? map a ? ? 0.90 a1 0.00 ? 0.05 d 4.70 4.90 5.10 e 2.80 3.00 3.20 d1 0.85 1.00 1.15 e1 0.85 1.00 1.15 b 0.25 0.30 0.35 e 0.65 typ l 0.50 0.60 0.70 pin 1 index area d e a a1 b 8 7 6 e 5 l d1 e1 pin 1 index area 1 2 34 a top view end view bottom view side view 2325 orchard parkway san jose, ca 95131 title drawing no. r rev. 8y1, 8-lead (4.90 x 3.00 mm body) msop array package (map) y1 c 8y1 2/28/03 common dimensions (unit of measure = mm) symbol min nom max note
19 at34c02 0958o?seepr?12/04 8u3-1 ? dbga2 1150 e. cheyenne mtn. blvd. color a do s pring s , co 8 0906 title drawing no. r rev. po 8 u 3 -1 a 6/24/0 3 common dimen s ion s (unit of me asu re = mm) s ymbol min nom max note 8 u 3 -1, 8 - ba ll, 1.50 x 2.00 mm body, 0.50 mm pitch, s m a ll die b a ll grid arr a y p a ck a ge (dbga2) a 0.71 0. 8 1 0.91 a1 0.10 0.15 0.20 a2 0.40 0.45 0.50 b 0.20 0.25 0. 3 0 d 1.50 b s c e 2.00 b s c e 0.50 b s c e1 0.25 ref d 1.00 b s c d1 0.25 ref 1. dimen s ion ? b? i s me asu red a t the m a xim u m s older ba ll di a meter. thi s dr a wing i s for gener a l inform a tion only. bottom view 8 s older ball s b d e top view pin 1 ball pad corner a s ide view a 2 a 1 4 5 pin 1 ball pad corner 3 1 e 2 6 7 8 d (e1) (d1) 1.
printed on recycled paper. 0958o?seepr?12/04 disclaimer: the information in this document is provided in connection wit h atmel products. no license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of atmel products. except as set forth in atmel?s terms and condi- tions of sale located on atmel?s web site, atmel assumes no li ability whatsoever and disclaims any express, implied or statutor y warranty relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particu lar purpose, or non-infringement. in no event shall atmel be liable for any direct, indirect, conseque ntial, punitive, special or i nciden- tal damages (including, without limitation, damages for loss of profits, business interruption, or loss of information) arising out of the use or inability to use this document, even if atmel has been advised of the possibility of such damages. atmel makes no representations or warranties with respect to the accuracy or comp leteness of the contents of this document and reserves the rig ht to make changes to specifications and product descriptions at any time without notice. atmel does not make any commitment to update the information contained her ein. atmel?s products are not intended, authorized, or warranted for use as component s in applications intended to support or sustain life. atmel corporation atmel operations usa 2325 orchard parkway san jose, ca 95131 tel: 1(408) 441-0311 fax: 1(408) 487-2600 regional headquarters europe atmel sarl route des arsenaux 41 case postale 80 ch-1705 fribourg switzerland tel: (41) 26-426-5555 fax: (41) 26-426-5500 asia room 1219 chinachem golden plaza 77 mody road tsimshatsui east kowloon hong kong tel: (852) 2721-9778 fax: (852) 2722-1369 japan 9f, tonetsu shinkawa bldg. 1-24-8 shinkawa chuo-ku, tokyo 104-0033 japan tel: (81) 3-3523-3551 fax: (81) 3-3523-7581 memory 2325 orchard parkway san jose, ca 95131 tel: 1(408) 441-0311 fax: 1(408) 436-4314 microcontrollers 2325 orchard parkway san jose, ca 95131 tel: 1(408) 441-0311 fax: 1(408) 436-4314 la chantrerie bp 70602 44306 nantes cedex 3, france tel: (33) 2-40-18-18-18 fax: (33) 2-40-18-19-60 asic/assp/smart cards zone industrielle 13106 rousset cedex, france tel: (33) 4-42-53-60-00 fax: (33) 4-42-53-60-01 1150 east cheyenne mtn. blvd. colorado springs, co 80906 tel: 1(719) 576-3300 fax: 1(719) 540-1759 scottish enterprise technology park maxwell building east kilbride g75 0qr, scotland tel: (44) 1355-803-000 fax: (44) 1355-242-743 rf/automotive theresienstrasse 2 postfach 3535 74025 heilbronn, germany tel: (49) 71-31-67-0 fax: (49) 71-31-67-2340 1150 east cheyenne mtn. blvd. colorado springs, co 80906 tel: 1(719) 576-3300 fax: 1(719) 540-1759 biometrics/imaging/hi-rel mpu/ high speed converters/rf datacom avenue de rochepleine bp 123 38521 saint-egreve cedex, france tel: (33) 4-76-58-30-00 fax: (33) 4-76-58-34-80 literature requests www.atmel.com/literature ? atmel corporation 2004 . all rights reserved. atmel ? , logo and combinations thereof, are registered trademarks, and everywhere you are sm are the trademarks of atmel corporation or its subsidiari es. other terms and product names may be trademarks of others.


▲Up To Search▲   

 
Price & Availability of AT34C02-10PE-27

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X